Search results for "Convergent series"
showing 7 items of 7 documents
Introducing the Pietarinen expansion method into the single-channel pole extraction problem
2013
We present a new approach to quantifying pole parameters of single-channel processes based on a Laurent expansion of partial-wave T matrices in the vicinity of the real axis. Instead of using the conventional power-series description of the nonsingular part of the Laurent expansion, we represent this part by a convergent series of Pietarinen functions. As the analytic structure of the nonsingular part is usually very well known (physical cuts with branch points at inelastic thresholds, and unphysical cuts in the negative energy plane), we find that one Pietarinen series per cut represents the analytic structure fairly reliably. The number of terms in each Pietarinen series is determined by …
Smooth and non-smooth traveling wave solutions of some generalized Camassa–Holm equations
2014
In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa-Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon, cuspon and compacton solutions. Two of the GCH equations do not support singular traveling waves. The third equation supports four-segmented, non-smooth $M$-wave solutions, while the fourth supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. Moreover, sm…
Fundamental solutions for general anisotropic multi-field materials based on spherical harmonics expansions
2016
Abstract A unified method to evaluate the fundamental solutions for generally anisotropic multi-field materials is presented. Based on the relation between the Rayleigh expansion and the three-dimensional Fourier representation of a homogenous partial differential operator, the proposed technique allows to obtain the fundamental solutions and their derivatives up to the desired order as convergent series of spherical harmonics. For a given material, the coefficients of the series are computed only once, and the derivatives of the fundamental solutions are obtained without any term-by-term differentiation, making the proposed approach attractive for boundary integral formulations and efficie…
Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and …
2014
In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively o…
Exact simulation of first exit times for one-dimensional diffusion processes
2019
International audience; The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability horizontal ellipsis The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study …
Generalized Camassa-Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions
2021
In this paper, we consider a member of an integrable family of generalized Camassa–Holm (GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier method to construct conservation laws for this family of GCH equations. Using the conservation laws of the underlying equation, double reduction is also constructed. Finally, we investigate traveling waves of the GCH equations. We derive convergent series solutions both for the homoclinic and heteroclinic orbits of the…
Kurzweil-Henstock type integral in fourier analysis on compact zero-dimensional group
2009
Abstract A Kurzweil-Henstock type integral defined on a zero-dimensional compact abelian group is studied and used to obtain a generalization of some results related to the problem of recovering, by generalized Fourier formulae, the coefficients of convergent series with respect to the characters of such a group.