Search results for "Convergent series"

showing 7 items of 7 documents

Introducing the Pietarinen expansion method into the single-channel pole extraction problem

2013

We present a new approach to quantifying pole parameters of single-channel processes based on a Laurent expansion of partial-wave T matrices in the vicinity of the real axis. Instead of using the conventional power-series description of the nonsingular part of the Laurent expansion, we represent this part by a convergent series of Pietarinen functions. As the analytic structure of the nonsingular part is usually very well known (physical cuts with branch points at inelastic thresholds, and unphysical cuts in the negative energy plane), we find that one Pietarinen series per cut represents the analytic structure fairly reliably. The number of terms in each Pietarinen series is determined by …

PhysicsNuclear and High Energy PhysicsToy modelSeries (mathematics)Plane (geometry)Quantum mechanicsLaurent seriesMathematical analysisNegative energynucleon resonances; poles; new pole extraction methodComplex planeConvergent seriesBranch point
researchProduct

Smooth and non-smooth traveling wave solutions of some generalized Camassa–Holm equations

2014

In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa-Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon, cuspon and compacton solutions. Two of the GCH equations do not support singular traveling waves. The third equation supports four-segmented, non-smooth $M$-wave solutions, while the fourth supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. Moreover, sm…

Equilibrium pointCusp (singularity)Numerical AnalysisSeries (mathematics)Applied MathematicsMathematical analysisFOS: Physical sciencesGeneralized Camassa-Holm Equations Traveling waves Homoclinic and Heteroclinic OrbitsMathematical Physics (math-ph)PeakonModeling and SimulationSaddle pointHomoclinic orbitMathematical PhysicsSaddleConvergent seriesMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Fundamental solutions for general anisotropic multi-field materials based on spherical harmonics expansions

2016

Abstract A unified method to evaluate the fundamental solutions for generally anisotropic multi-field materials is presented. Based on the relation between the Rayleigh expansion and the three-dimensional Fourier representation of a homogenous partial differential operator, the proposed technique allows to obtain the fundamental solutions and their derivatives up to the desired order as convergent series of spherical harmonics. For a given material, the coefficients of the series are computed only once, and the derivatives of the fundamental solutions are obtained without any term-by-term differentiation, making the proposed approach attractive for boundary integral formulations and efficie…

Boundary (topology)02 engineering and technology01 natural sciences0203 mechanical engineeringTransverse isotropyBoundary element methodMethod of fundamental solutionsGeneral Materials ScienceMulti-field material0101 mathematicsSettore ING-IND/04 - Costruzioni E Strutture AerospazialiConvergent seriesLaplace's equationPhysicsSeries (mathematics)Applied MathematicsMechanical EngineeringMathematical analysisIsotropySpherical harmonicsCondensed Matter Physics010101 applied mathematicsElliptic operator020303 mechanical engineering & transportsMechanics of MaterialsModeling and SimulationFundamental solutionSpherical harmonicInternational Journal of Solids and Structures
researchProduct

Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and …

2014

In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively o…

Equilibrium pointNumerical AnalysisNonlinear Sciences - Exactly Solvable and Integrable SystemsSeries (mathematics)Homoclinic and heteroclinic orbitApplied MathematicsMathematical analysisFOS: Physical sciencesMathematical Physics (math-ph)Phase planeTraveling waveNonlinear systemSPE and generalized SPE equationModeling and SimulationSaddle pointHomoclinic orbitExactly Solvable and Integrable Systems (nlin.SI)Singular solutionVariational solitary wavesSettore MAT/07 - Fisica MatematicaMathematical PhysicsConvergent seriesAnsatzMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Exact simulation of first exit times for one-dimensional diffusion processes

2019

International audience; The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability horizontal ellipsis The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study …

Girsanov theoremand phrases: Exit timeDiscretizationsecondary: 65N75Exit time Brownian motion diffusion processes Girsanov’s transformation rejection sampling exact simulation randomized algorithm conditioned Brownian motion.MSC 65C05 65N75 60G40Exit time01 natural sciencesGirsanov’s transformationrandomized algorithm010104 statistics & probabilityrejection samplingGirsanov's transformationexact simulationFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsConvergent seriesBrownian motion60G40MathematicsNumerical AnalysisApplied MathematicsMathematical financeRejection samplingProbability (math.PR)diffusion processesNumerical Analysis (math.NA)conditioned Brownian motionRandomized algorithm010101 applied mathematics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Computational MathematicsModeling and Simulationconditioned Brownian motion 2010 AMS subject classifications: primary 65C05Brownian motionRandom variableMathematics - ProbabilityAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Generalized Camassa-Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions

2021

In this paper, we consider a member of an integrable family of generalized Camassa–Holm (GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier method to construct conservation laws for this family of GCH equations. Using the conservation laws of the underlying equation, double reduction is also constructed. Finally, we investigate traveling waves of the GCH equations. We derive convergent series solutions both for the homoclinic and heteroclinic orbits of the…

Holm equationsIntegrable systemGeneral MathematicsInfinitesimalNonclassical symmetries01 natural sciencesdouble reduction010305 fluids & plasmas0103 physical sciencesmultiplier methodComputer Science (miscellaneous)QA1-939Generalized Camassa–Holm equationsHomoclinic orbit010306 general physicsEngineering (miscellaneous)Settore MAT/07 - Fisica MatematicaConvergent seriesmulti-infinite series solutionsMathematicsMathematical physicsConservation lawsnonclassical symmetriesConservation lawHomoclinic and heteroclinic orbitsMulti-infinite series solutionsDouble reductionSymmetry (physics)Pulse (physics)generalized Camassa&#8211Mathematics::LogicMultiplier methodHomogeneous spaceconservation lawshomoclinic and heteroclinic orbitsMathematics
researchProduct

Kurzweil-Henstock type integral in fourier analysis on compact zero-dimensional group

2009

Abstract A Kurzweil-Henstock type integral defined on a zero-dimensional compact abelian group is studied and used to obtain a generalization of some results related to the problem of recovering, by generalized Fourier formulae, the coefficients of convergent series with respect to the characters of such a group.

General MathematicsMathematical analysisMathematics::Classical Analysis and ODEsLocally compact groupFourier integral operatorsymbols.namesakeFourier transformSettore MAT/05 - Analisi MatematicaFourier analysisImproper integralsymbolsAbelian groupCompact zero-dimensional group characters of group Kurzweil-Hestock integral Perrron integral Fourier series coefficient problem.Fourier seriesConvergent seriesMathematicsTatra Mountains Mathematical Publications
researchProduct